Zero distribution of random sparse polynomials
نویسندگان
چکیده
منابع مشابه
Zero Distribution of Random Polynomials
We study global distribution of zeros for a wide range of ensembles of random polynomials. Two main directions are related to almost sure limits of the zero counting measures, and to quantitative results on the expected number of zeros in various sets. In the simplest case of Kac polynomials, given by the linear combinations of monomials with i.i.d. random coefficients, it is well known that th...
متن کاملAsymptotic zero distribution of random polynomials spanned by general bases
Zeros of Kac polynomials spanned by monomials with i.i.d. random coefficients are asymptotically uniformly distributed near the unit circumference. We give estimates of the expected discrepancy between the zero counting measure and the normalized arclength on the unit circle. Similar results are established for polynomials with random coefficients spanned by different bases, e.g., by orthogonal...
متن کاملOn Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملRandom Sampling of Sparse Trigonometric Polynomials
We study the problem of reconstructing a multivariate trigonometric polynomial having only few non-zero coefficients from few random samples. Inspired by recent work of Candes, Romberg and Tao we propose to recover the polynomial by Basis Pursuit, i.e., by l-minimization. Numerical experiments show that in many cases the trigonometric polynomial can be recovered exactly provided the number N of...
متن کاملAsymptotic zero distribution of biorthogonal polynomials
Let ψ : [0, 1] → R be a strictly increasing continuous function. Let Pn be a polynomial of degree n determined by the biorthogonality conditions ∫ 1 0 Pn (x)ψ (x) j dx = 0, j = 0, 1, . . . , n− 1. We study the distribution of zeros of Pn as n → ∞, and related potential theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2017
ISSN: 0026-2285
DOI: 10.1307/mmj/1490639822